
Note that the solution of all the problems elucidated is based on the solution of the 
selfsimilar problem regarding a sudden change in the deformation on the boundary of an elastic 
half-space. It was found in the solution of this problem /8, 9/ that for certain relationships 
between the anisotropy and the initial deformations, a domain of values ur**. although small, 
can appear for which the solution is not unique. For these values of (Lo* additional inves- 
tigations are necessary. Such an investigation is performed in /ll/ and enables one to say 
to which of the two possible solutions preference should be given. 
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CONSTRUCTION OF DISCONTINUOUS SOLUTIONS OF THE EQUATIONS 
OF PLANE ELASTICITY THEORY BY THE METHOD OF GENERALIZED FUNCTIONS* 

A.S. KOPETS 

A method of constructing integral representations ofdiscontinuous solutions 

of the equations of plane elasticity theory based on the use of the 

apparatus of the theory of generalized functions is described. The 

representations obtained for the discontinuous displacement and stress 
field components are utilized to formulate sufficient conditions ensuring 

continuous continuation of these quantities at almost all the points of 
the line of discontinuity. 

1. Formulation of the problem. We consider the complete system of equations of 

plane elasticity theory describing the stateof plane strain of a cylindrical body when there 

are no mass forces and initial stresses /l/ in a system of rectangular Cartesian coordinates 
-.__- 

*Prikl.Natem.?fekhan.,52,6,1013-1021,1988 



Elere Uij and ui are the components ofthe stress tensor and displacement vector in the 

coordinate system x1z2, h,1_1 are the elastic Lame constants, and Sij is the Kronecker delta. 

In (1.1) and (1.2) and the subsequent formulas the subscripts i,j,k,l, nt take the values 

1, 2 and summation is over the repeated subscripts. 
Let I, be a rectifiable piecewise-smooth finite line represented parametrically: L ={(ZI, 

5%): xi -= Ei (s), a < s << b} in the zlzz coordinate system. Rere s is the arc abscissa measured 

from a certain fixed point on the contour L or on its continuation, a, b are real numbers 

whose difference determines the length of the line L, and gi (4 are bounded functions having 

piecewise-continuous derivatives in the interval (a, h). We assume that thesetof points of 

the line L is closed. 
The points of the coordinate plane .rl.rl belonging to the contour L and corresponding to 

a define value of the parameter s will be denoted by t(s) = (E,(s), E2(s)); we indicate the 

remaining points of the plane by the symbols x = (.Q. x2) and y --- (yl, y2). The distance between 

the points of the coordinate plane is given by the expression If- yl :: Ir(r,- y,)' (xq - !/?)'. 

We shall say that the point t t=: I, has a multiplicity n for a given method of par- 

ametrizing the contour if n different values of the arc abscissa .cl.sp... ..s, exist for which 

1 (SJ 7 t (SJ : = t (s,,) = t. 
Obviously all points of selfintersection of the contour L (if such there be) have a 

multiplicity greater than one. 
We consider the direction of the unit vector normal to the contour L to be positive if 

the normal is on the right during traversal of the contour in the direction of increase of 

the parameter s. If 'F:; (.v) are angles formed by the direction of the positive normal at the 

point t (s) and the coordinate axes xb,then 

cos 'PI = &MS, cos (F~ = --dE,!ds (1.3) 
We will call the set of functions Uij. ui that are analytic in the open domain P \ L 

and satisfy (1.1) and (1.2) in this domain, the discontinuous solution of the equations of 

plane elasticity theory with the line L of jumps. If the quantities Uij. ni are continuously 

continued on the boundary L almost everywhere (with the exception, perhaps, of a finite set 

of points), the boundary values of these quantities are locally summable functions on the 

contour L and the derivatives &rij/&r,,, a~:&, are locally summable functions in the space R", 

then we call such discontinuous solutions quasiregular. 

The problem is to construct representations of discontinous solutions for a given jump 

line L and to indicate the conditions for which the discontinuous solutionbecomesquasiregular. 

f- 

2. Systems of functional equations for discontinuous solutions. Let f' and 

be boundary values to which the component f of a quasiregular discontinuous solution 

tends upon approaching the jump line L from the positive and negative normal side. Then the 

difference I' -f determines the jump of this component on the contour L that we shall 

henceforth denote by III. 

For an arbitrary quasiregular discontinuous solution the jumps [Oi,l, hi1 considered as 

functions of the arc abscissa s are obviously locally summable on the contour L. At the same 

time the original quantities (ril. 1~: and all their first derivatives are locally summable 
functions in R2. Therefore, regular functionals from the space of generalized functions 

D'(R') /2/, which will be related by the dependences 

auijlaSk = 8kUij - lUfj]COS (FKSL (2.1) 

aUii'3Xk = dkUi - [UilCOS ‘pk6L (22) 

resulting from the properties of differentiation of generalized functions /3/, can be set in 

correspondence with the functions Uij, u:, &~~~i&r~, au&ax,. Here and henceforth, the same symbols 
are used to denote regular generalized functions as for the appropriate locally summable 
functions, & denotes the generalized derivative with respect to the coordinate zk, and 
writing m (s)&, corresponds to a contour delta function with density m (4 that is locally 
summable to the contour L. We later denote the convolution of two generalized functions by 
an asterisk *. 

Eqs.tl.1) and (1.2) can be transformed in a natural manner into functional equalities 

for the appropriate regular generalized functions that will have the same form by virtue of 
the notation used. 

Going over to the generalized derivative in (1.1) by using the dependence (2.1), we 
will have 

Bjuij = IPilSL, Ipi1 = IUijlCOS 'pj (2.3) 
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where IpiI are jumps of the force vector components acting on the edge of the contour L. 
Using relations (2.2) in Eqs.(l.2), similarly we obtain 

Eqs.(2.3) and (2.4) are the complete system of equations to determine the functionals 

(Jijl ui in generalized derivatives. 

Substituting (2.4) into (2.31, we arrive at the system of functional equations 

The set of generalized solutions of this system in D’ (R’) obviously contains regular 
functionals corresponding to components of ui of the original quasiregular discontinuous sol- 

ution. 

3. Construction of integral representations of discontinuous solutions. 
Let us formulate the conditions which ensure the solvability of system (2.51 in the space 

D’ (R2) by assuming that the jump functions [pi]. [ui] on the right-hand sides of these 
equations are arbitrary locally summable functions given on a certain contour I,. 

Theorem 1. If the length of the contour L is finite, then generalized solutions of the 
system (2.5) exists in D'(R') f or arbitrary summable jump functions [rlj 1. [[Lil and can be 
represented in the form 

ll, = ul' - ui, * r, - dhCJi, * h,, (3.1) 

I’/ = Ip,l& (:3.2) 

hIh. = 9. Iu,,,I cos (r,,,R,S,, i- p ([Ull cos ‘P&, + Iutl cos (PIS,,) 

where uCn are solutions of the homogeneous system of equations in D’(R2) 

pd,d,,lui3 + (h + p)didjujo =_O (3.3) 

and ui, are the matrix components of the fundamental solutions of the system under consider- 

ation that satisfy the equations 

t@na,nui, + (A + I*)Bii3jUji = --66fl .(X/t) 

(6 is the delta-function from the space D' CR21 /2/). 

Proof. Let 0 be the fundamental solution of the biharmonic operator 

(aiai)w = 6 (35) 

which by the Malgrange-Ehrenpreis theorem /2/ always exists in D' (R2). Then explicit ex- 

pressions for the matrix components of fundamental solutions of the system under investigation 

are given by the formulas 

L‘ij = 11-r (X + 2tL)-' ((h f p) aid@ - S;, (h + 2~)8,8,@) 

that convert (3.4) into identities. 

(li.6) 

Taking into account that the supports of the functions Ip,lSL and lu,lcoscpj6~, agree with 

the set of points of the contour L that satisfies the compactness conditions in I??, and taking 

into account the sufficient conditions for the existence of a convolution in D’ (R’). we 

obtain that expressions (3.1) determine the generalized functions in D’(R2) for any set of 

functions Ipi], luil summable on L. 

Substituting representations (3.1)intothe right-hand side of (2.5) and using the 

properties of a convolution of generalized functions /2/ and the relationships (3.2), (3.3), 

and (3.4), we obtain the chain of equalities 

tIO,nd,Ui + (h + p)didjut = tldmd,ui" + (Jz + p)didjujO - 

(pa,,,a,,,ui, + (A + p)aiajUjJ * r~ - a, (panlBmUit -t 

th i- P)aiajuj,) * h,, = (6 * rl + a,6 * h,k)Si, = 

'i $- akhik = Ipi16L + ak (h Iu~ICOS (Prn&_6ik + 

P (141 co3 CpSSL + lu~lcos r&S,)) 

from which it is seen that function of the form (3.1) are a generalized solution of system 

(2.5). 
Using reductio ad absurdum, it can be shown that every generalized solution of the 

system under consideration has the form (3.1). The theorem is proved. 

Corollary. A generalized solution of the system of functional Eq.(2.3) and (2.4) exists 

under the assumptions of Theorem 1 and is determined by the representations (3.1) for functionals 



and expressions for 
t%on (3.1) into (2.4) 
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the functionals ~~~ obtained as a resultofsubstituting the represen- 

Followinq /2/ we formulate the following lemma. 

Lemma. Let f(2), g(x)F o'(R'). If the support of the generalized function g(r) (supp g(x)) 
is a compact set in R" and the contraction of the generalized function f (2) in R2\ (0) 
belongs to the space of infinitely differentiable functions C" (P\ (0)) then the contraction 
oftheconvolution of these generalized functions in the domain Hz\ suppg(s) belongs to 
cX(R2\suppg(.x)) and is expressed in terms of values of the functionals g(z) in elements 
of the space Cm(HZ\{O)) by the formula 

(f * g)(s) = (g(y), f (2 - !/)I> .T E R2 \ supp g, y F R' (3.8) 

If the solution of the biharmonic Eq‘(3.5) is represented in the form c/4/, p.248) 

d, = (811-l (t I2 In ) r.z [ 
then the matrix components of the fundamental solutions found by means of (2.6) will be given 
by the expressions 

The contractions of these components in the domain R'\ {0} are obviously analytic func- 
tions defined in this domain by the Same relationships (3.9) in which, however, all the 
operations are treated as in the classical sense. It thence follows that the system of Eqs. 
(3.3) is of elliptic type and its homogeneous solutions are analytic functions everywhere in 
the space Rz/2/. 

By differentiating (3.9) in the generalized sense, analogous formulas can be obtained 
for the Eunctionals c?,lJ,,, Lgjr, dgLij[ and it can be seen that the contractions of these func- 
tionals inthedomain RZ\ {0} are analytic functions. 

Then on the basis of the lemma we arrive at the conclusion that contractions of the 
generalized functions Ui, cT[j corresponding to the representations (3.1) and (3.7) in the 
domain i?\ L determine infinitely differentiable functions whose explicit form is set up 
by using the equalities (3.8) 

ui (2) = uic (z) - (r1 (Y), l$(I - y)) - (h,, (y), 31;Ui, (t-y)) 
Ofj tf) = ffijc (3) - (fi (J/f, Ljjf (X - y)) - (hjh_ (y), it&ijf (1. - EJ)) 

(3.10) 

2~: R2\L, ye R2 

Taking into account the governing relationships for the contour delta-function /3/ (here 
and henceforth integration is over the contour L) 

formulas (3.10) become 

ui (.r) = ui" (x) - s IlPJWlii, (S - t (8)) + (3. 1 I) 
(h luJ(s)cos 'Pm (S)Si, + p ([U~l(S) cos fph_ (8) + 
lU,l(3)COa CFi (s))a,Uil (5 - t (S))} dS 

And since the jump functions Ipi] and [u,l are, by definition, summable on the contour 
L, the functions in (3.11) will be analytic in the domain R%\L. 

Contracting the functional Eqs.(2.3) and (2.4) in the domain R2\L and taking the 
equality of the generalized and classical derivatives for the regular functionals gi and uij 

and the DuBoiS-Raymond lemma /2/ into account, it can be proved that analytic functions of the 
form (3.11) in R*\ L satisfy the classical system of Eqs.cl.1) and (1.2). 

We therefore arrive at the following theorem. 

Theorem 2. On a contour L of finite length let there be given arbitrary summable 



794 

tions [pll and [u,l. Then contractions of the functionals constructed by means of (3.1) 
(3.7) in the domain R”!L determine the discontinuous solution of the plane elasticity 

theory problem with the line of jumps L. 

func 
and 

Remark. If it is assumed that the functions [P/I, [ritl given on the contour L vanish at a 
certain point LO of this contour, then contractions of the functionals (3.1) and (3.7) in the 
domain IF \ L, (I., I,\ I,,,) determine the discontinuous solutions of the equations of plane 
elasticity theory with the line of jumps I.,. 

The proof of this assertion follows fromthe fact that the supports of the functions (,Ji] h, 
[ii,] (‘0 q ,,A, coincide in this case with the set of points I,\ I.,,. 

Therefore, the integral representations of discontinuous solutions for a finite contour 

4 consisting of separate open and closed piecewise-smooth arcs can be obtained from the 

integral representations for a continuous closed smooth contour L (possibly with points of 

selfintersection) formed by supplementing the contour ~.,by a set of smooth arcs L,, if we set 

bil [{J/l = ‘1 on /_,,in the latter. This proves the possibility of limiting ourselves to a con- 
sideration of just some closed continuous smooth lines of a jump to analyse the integral 

representations constructed. 

4. Conditions for the existence of quasiregular discontinuous solutions. 
Let us now set up a set of sufficient conditions which enable a certain class of solutions of 
practical interest to be extracted from among the set of discontinuous solutions determined by 

(3.11). To this end, we extract the class of functions II'(K) from the set of summable func- 

tions given on the contour L and having singularities at a finite set of points EC/,, 

we will say that the function n(s) given on the contour L belongs to the class II' (E) 

if it satisfies the Holder condition on each of the sections&.of the contour L obtained as a 

result of its partition by a finite set of points E 

and in the neighbourhood of each point Lo E the following estimate holds: 

m (s) = m,.* (S)I t (9) - t (zv)Ip, 0 < av < 1 

where m,* (4 is a function satisfying the HGlder condition in the neiqhbourhood of the point 

t (s\-) /5/. 

Theorem 3. LetL be a smooth continouous closed contour (t (a) = t (b)) on which a finite 

set of points EC L is fixed, including all selfintersection points of the contour L, and 

summable functions [pi], 1~~1 are defined such that [pll~ H’(E), d [ulllds~ H’(E) and for each 

point t, E E of multiplicity n the following condi.tions are satisfied: 

$2, ([Uil( s,, $~ 0) - IUJ (SD - 0)) = 0 (4.1) 

where (SP} is a set of values of the arc abscissa corresponding to a given point t, i= E. Then 

the discontinuous solution of the plane problem of elasticity theory with the jump line L 
determined by the relationships (3.11) is quasiregular. 

Proof. We assume that summable functions [prl t Lull satisfying all the conditions of 

Theorem 3 are given on the contour L. Then by Theorem 2, formulas (3.11) will determine the 

discontinuous solution of the plane elasticity theory problem with the jump line L. It remains 

to show that the boundary values of the components Uijr ui of this solution exist for almost 

all points of the contour L and are summable functions of the arc abscissa s while the 

derivatives daiji8xk, auii&rk are locally sununable functions in the space f12. 

Together with the closure of the contour the set of points C partitions the contour of 

integration L in the representations (3.11) into M smooth arcs that are not pairwise mutually 

intersecting. The set of values of the parameter s corresponding to the ends of these arcs 

will here consist of M f 1 elements a,,= a, aI, . . . . sm = b. Consequently, by partitioning the 

integration intervals in (3.11) in conformity with the proposed scheme and taking account of 
the initial assumptions as well as relationships (1.3), they can be represented in the form 

ui (X) = Uio (z) - ap-'Z lim {([pJ(a)Vi, (z - t (a)) + (4.2) 

<k bJ(a)(--dW,, (x - t (s))/ds))} 

uij (5) = oii' (XI - UZ: lim {<[pJ (S)Lcj, (x - t (a))) + 

<p [u,l(4(--dKij, (5 - t (S))ids)} 

a = (2~ (x + I))-‘, z E R2\L 

Here and henceforth, the angular brackets denote integration with respect to s between 

the limits SY + E and S\.+* - s, the limit is evaluated as e --t 0, and summation is with 
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respect to y from v=O to v = M-- 1. For the kernels 1.f~ (I), wit (z), L,jl (x), h'iji (x) we obtain 

expressions (in these and subsequent formulas p,q = I,2 and p+ q. and summation is not 
carried out over p) 

Since d[ull!ds~ Ii’ fE) and the kernels ~~~(~),K~j~(~) are analytic functions in the domain 

RZ\ 101 then for the second components under the summation sign in representations (4.2), 
integration by parts is applicable. Carrying out the operation mentioned in these formulas 
we obtain 

ui (a) =ui"(.i) - a2 { lim<p-l[pl](s)V~~ (I - t(s)) + 

%TBit (c - t (s))> - lim IZLJ (s,~+~ - c) WI, (.r -t (s,,,~)) + 

lim[u,](s, -j- E)Wi1(5 -t (&))} 

and an analogous expression for *ii (xf, Grouping terms for identical values of the functions 

wil lx) and Kirr (4 in these last expressions and passiny to the limit, taking conditions 
(4.1) into account, we will have 

(4.4) 

u~~(x)=u~~~ (5) -a S{ IPtl (s) Lijl tx - t is)) i 

p q- Kij, (5 - t (s),} ds 

Hence it follows that with the assumptions made regarding the jump functions [p,i and 
[LL~], the representations (3.11) and (4.4) are equivalent. 

we will now examine the singular integrals 

On the basis of the Sokhotskii-Plemelj formulas 1/S/, p.55) governing the boundary values 
of the Cauchy integral, analogous formulas can be obtained that govern the boundary conditions 
of these integrals for an arbitrarily given function m(S) from the class H'(E) 
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The integrals on the right-hand sides of these formulas should be considered in the 
principal value sense /5/. 

We note that the boundary values of the integrals I,, (2) J, (J) constructed for a certain 
m (3) f H’ (E), do not exist for contour points belonging to the set E. 

Starting from the representations (4.4) and (4.5) we find the boundary values of the 
quantities ui (J) and sij (2) for the jump line L 

‘T,j~ (f,)= Oij”(to)l ~(X $ 1)-lTij(S~)- 

a 
s( 

[PiI @) Lijl fto - t CsJ) + IL * Kiji (to - t(S))) dsY 

t, = t (S”) 

T ,‘,, (s) = [pp] cos (p,, (4 cd cpq +- x + 1) -t- 

Ip,] cos c& (4 co2 I{‘* - x - 1) + (- 1)” qJ {q cos ([‘q - 

dlu I 
-L?- cos l& 

ds I 
cosz yp 

(4 G) 

The formulas presented enable us to assert that the boundary values of the displacement 

and stress field components for a given discontinuous solution are summable functions on the 
contour L. 

Finally, to prove that the functions Lli. Oij, dUitilXk* 8cJij)'dXk, obtained on the basis of the 

integral representations (4.4) are locally summable in the whose space A2 it is sufficient 

to see that these function are summable in the whole space R2, it is sufficient to see that 

these functions are summable in the whole circle of sufficiently small radius whose centre 

lies on the contour L. The proof is based on utilization of known estimates of the behaviour 

of a Cauchy-type integral and its derivative in the neighbourhood of the contourofintegration 

and near singular points on this contour /5/. 

This completes the proof of the theorem. 

The remark expressed at the end of Sect.3 enables this theorem to be generalized to the 

case of discontinuous solutions with an arbitrary piecewise-smooth jump line. 
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